Home » Uncategorized » Metacognitive ability correlates with hippocampal and prefrontal microstructure

Metacognitive ability correlates with hippocampal and prefrontal microstructure

New paper by Micah Allen (who is, together with Hakwan Lau and Steve Fleming, currently doing the most interesting work on metacognition):

The ability to introspectively evaluate our experiences to form accurate metacognitive beliefs, or insight, is an essential component of decision-making. Previous research suggests individuals vary substantially in their level of insight, and that this variation is related to brain volume and function, particularly in the anterior prefrontal cortex (aPFC). However, the neurobiological mechanisms underlying these effects are unclear, as qualitative, macroscopic measures such as brain volume can be related to a variety of microstructural features. Here we leverage a high-resolution (800 µm isotropic) multi-parameter mapping technique in 48 healthy individuals to delineate quantitative markers of in vivo histological features underlying metacognitive ability. Specifically, we examined how neuroimaging markers of local grey matter myelination and iron content relate to insight as measured by a signal-theoretic model of subjective confidence. Our results revealed a pattern of microstructural correlates of perceptual metacognition in the aPFC, precuneus, hippocampus, and visual cortices. In particular, we extend previous volumetric findings to show that right aPFC myeloarchitecture positively relates to metacognitive ability. In contrast, decreased myelination in the left hippocampus correlated with better metacognitive insight. These results highlight the ability of quantitative neuroimaging to reveal novel brain-behaviour correlates and may motivate future research on their environmental and developmental underpinnings.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: